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We present a theoretical investigation of damage development in Ceramic Matrix
Composites (CMC's) before catastrophic failure under gradual loading conditions. The aim
of the work is to give a theoretical interpretation of the experimental results on the
development of damage in the C/C-SiC composite obtained by cyclically loading, unloading,
and reloading a planar specimen. Our approach is based on statistical, micromechanical
models of the failure of CMC's in the framework of global load sharing, where the failure
mechanism includes quasi-periodic matrix cracking, gradual breaking of fibers, and sliding
of broken fibers with respect to the matrix. It is demonstrated that the non-linear
characteristics of the constitutive behavior and the potential drop measured under uniaxial
loading of a planar C/C-SiC specimen can be described with reasonable accuracy in the
framework of statistical, micromechanical models. © 2000 Kluwer Academic Publishers

1. Introduction pose of damage state evaluation for composites, and
Ceramic Matrix Composites (CMC's) have agreattech4t was applied to the carbon fiber reinforced carbon-
nological importance due to their good mass specifisilicon-carbide C/C-SiC composite [19]. Since the C/C-
properties, good performance at high temperature an8iC is a candidate material to be used in aerospace
relatively low production costs. In the study of the fail- applications and also in power plants for ultra high tem-
ure of CMC's the main interest is in the strength distri- perature heat exchangers, the evaluation of its damaged
bution of the material and in the dependence of strengtktate is of crucial interest. In the manufacturing pro-
on the sample size [1-18]. The characterization of theess of C/C-SiC liquid silicon is poured into a two-
damage state and damage development in CMC’s balimensional woven C/C-preform to form a silicon-
fore catastrophic failure under gradual loading condi-carbide matrix in order to prevent the C fibers from
tions has also received much attention especially by thexidation. For a detailed description of the manufac-
experimental community [18-29]. In the past decade auring process and for the mechanical properties of
large amount of theoretical efforts have been devote/C-SiC see Ref. [19]. The most important character-
to the study of reliability and size scaling of compos-istic quantities of C fibers and that of the composite are
ite’s strength, and to clarify how the ultimate tensile summarized in Table I.
strength depends on the underlying constituent proper- The experiments were performed under stress-
ties of fibers, matrix and fiber-matrix interface [7—18]. controlled conditions such that a planar C/C-SiC spec-
Sophisticated numerical techniques have been deveimen was cyclically loaded, unloaded, and reloaded
oped which enable also large scale calculations of thavhile afixed electric currerit, was maintained between
strength of composites, and by now this problem istwo cross sections of the specimen. To obtain infor-
well understood [11-17]. However, much less is knownmation about the damage development under gradual
about the behavior of CMS's before catastrophic fail-loading, the macroscopic constitutive behavidf)
ure occurs, under gradual (cyclic) loading conditions. Aand the potential drop between the two sections of
large amount of experimental results [18—29] have beethe specimen were monitored. Since the matrix mate-
accumulated over the past years but a comprehensivél SiC practically does not contribute to the electric
theoretical understanding is still lacking. conductivity of the compaosite, the potential drop mea-
Recently, a conductivity (DC potential drop) basedsurement provides direct information about the dam-
non-destructive test-method was developed for the purage occurring in fibers and fiber bundles, while the
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constitutive behavior contains also the complicated efanalytically tractable is the assumption of Global Load
fect of the matrix and fiber-matrix interface. The most Sharing (GLS), which means that after each fiber break-
important experimental findings can be summarized agg the stress is equally distributed on the intact fibers
follows [19-24]: (a) The macroscopic constitutive be- neglecting stress enhancement in the vicinity of failed
havioro (¢) is non-linear with a decreasing unloading regions [1-10, 15-18]. This approach implies ‘infinite’
modulus. During the unloading-reloading sequencesange interaction between fibers so it corresponds to
o (¢) exhibits hysteresis with increasing opening. Ata mean field approach. The other limiting case is ap-
complete unloading: =0 remaining anelastic strain plying Local Load Sharing (LLS), where the stress is
€anoccurs. (b) The differenc&U of the potential drops redistributed in the vicinity of a failed fiber giving rise
U (¢) andU, measured at a straérand at the initial state  to high stress concentration around failed regions [6-8,
between two sections of the specimen, is a non-linearlyt1-14].
increasing function of. It was found that\U (¢) can be It is reasonable to assume that when the C/C-SiC
well fitted with a power law with an exponent between 1 composite with woven structure is loaded parallel to
and 2. During the unloading-reloading sequences hyssne of the main fiber directions, the perpendicular fibers
teresis ofAU with increasing opening occurs, and at carry practically no load. That is why, as a first step of
complete unloading\U as a function of the anelastic the model construction we neglect the woven struc-
straineyn can be well approximated by a straight line. ture and consider only an unidirectional ensemble of
The aim of the present paper is to give a theoretifibers. In the case of the C/C-SiC composite, due to the
cal description of the experimental results on the damhigh residual stresses generated by thermal expansion
age development in C/C-SiC composite under uniaxiamismatch and matrix porosity, the silicon carbide ma-
loading focusing on the constitutive behavid) and  trix is multiply cracked even during the manufacturing
on the potential drop\U (¢) as a function of straim.  process [19]. Under elongation further cracks appear
Our approach is based on statistical, micromechanicah the matrix perpendicular to the loading direction. It
models of composites’s failure, which were recentlyis verified experimentally that rather than propagating
studied in the context of size scaling of the globalthrough the fibers, the fiber-matrix interface debonds
strength of composites [7—17]. In the formulation of theand the fibers slide relative to the matrix with sliding
constitutive equations we build mainly upon the work resistance. This implies that over a length, the stress
of Phoenix and Raj [10], Curtin [15, 16], Hilet al. [25]  in the matrix builds up linearly to the original level giv-
and Weigelet al. [26]. The failure mechanism of our ingrise to new cracking. Thus, it can be considered that
model captures quasi-periodic matrix cracking, graduabfter reaching a certain stress valig. the matrix is
breaking of fibers and sliding of fibers relative to the ma-quasi-periodically cracked and cannot support further
trix. We show that based on these simple assumptioni®ad, therefore, all the additional load is carried by the
in the framework of the global load sharing approachfibers. In the experiments the Young-modulus of the
it is possible to explain the observed non-linear charwoven carbon fiber network without the matrix mate-
acteristics of the constitutive behavior and that of therial was found to be equal to the Young-modulus of
potential drop. It has to be emphasized that our methothe complete C/C-SiC composite [22, 23], which also
of investigation is general, it can be applied to studysupports the above argument.
damaging of other composites as well, and it can also In the following we show that based on these sim-
serve as a basis for the formulation of material laws inple model assumptions in the framework of global load
the framework of continuum damage mechanics [25]. sharing itis possible to reproduce the qualitative behav-
After giving a short summary of the main ideas of ior of the potential drop as a function of the load, and
our modeling in Sec. 2, the constitutive equations ofthe macroscopic constitutive behavior of the C/C-SiC
the material and the behavior of the potential drop willcomposite.
be derived in Secs. 3 and 4, respectively. In Sec. 5 we
compare the results of the model calculations to the . . .
experimental ones. In Sec. 6 the limitations of our ap3- Loading-unloading-reloading sequences

proach and possible future improvements will be dis- in the framework of GLS _
cussed. In the derivation of the constitutive equations we fol-

low the ideas presented in Refs. [10, 16, 25]. After the

above simplifying assumptions, the system under con-
2. Modeling damage development sideration is composed ®f parallel, cylindrical fibers
The evolution of damage and the tensile failure of fibemwith length L, radiusr and cross sectioA;,. Let us
reinforced composites depends primarily on two fac-denotef the ratio of the total cross sectional area of the
tors, i.e. on the strength distribution of the individual fibers and the total cross section of the specifgn.e.
fibers and on the mechanics of load transfer from bro-f = NA¢,/ A, the volume fraction of fibers. The fibers
ken fibers to the unbroken ones. The strength distriare considered to be linearly elastic until breaking (brit-
bution of fibers can be well established a priori, buttle rupture) with identical Young-modulus; .
the details of the load transfer mechanism depend on When a fiber breaks the load carried by the fiber
many constituent properties and, in particular, on thedrops down to zero at the position of the break. Similar
detailed mechanics of the fiber-matrix interface. Henceto the case of matrix cracking, the fiber-matrix interface
it is very difficult to obtain it correctly if more than debonds and the stress builds up in the fiber through the
one fiber is broken. Among the several theoretical apstress transfer across the sliding fiber-matrix interface.
proaches, one simplification that makes the problenburing the loading process, the stress in a broken fiber
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Figure 1 The stresd,- along a broken fiber under loading. The sliding g 3¢

lengthl ¢ is also indicated. The slope mg is 2t /r.

L . . Figure 2 lllustration of the distribution of fiber breaks (crosses) in the
Tb as a function of the distanoefrom the break can vicinity of the reference matrix crack plane. Fibers which do not have a

be written as break within a distancle are considered to be intact (I), otherwise they
are considered to be broken (B).

TH00 = 2x, )

wherer denotes the sliding resistance at the fiber maon all the intact fibers, and stress concentration around
trix interface [16, 28, 30, 31]. The upper scriptcor- failed fibers is neglected. According to the above expla-
responds to theiloaaing' of the specimen. Equation pation, those fibers are considered to be intact which do

also implies thall," reaches the stress vallieof intact N0t have abreak within the distané€; from the refer-
fibers at a sliding length; =rT /27, as illustrated in  €NCe plane, however, the broken fibers carry also some

Fig. 1. load at the reference crack plane due to Equation 1, see
For the statistical variation of fiber strength a Weibull /S0 Fig. 2. Whenl denotes the average load on in-
distribution is assumed tact fibers, the general form of the constitutive equation
reads as
T m+1
— o
P“7—1—“%}<;) }’ @ F=TA-PM)+(WPT). @

wherem denotes the Weibull modulus determining where(T,) denotes the average stress carrying capacity
the variability of strength, and. is the characteristic  of broken fibers within a distande from the reference
strength of fibers embedded in a matrix. The characterplane P(T)and 1— P(T) are the fraction of broken and
istic length scalé. associated toc plays also acrucial intact fibers, respectively [10, 15, 16]. Specific forms
role of the constitutive behavior for the case of loading, un-
— loading and reloading can be obtained from Equation 4
loo Mz \ Y/t ool /™ by plugging in the proper form ofTy).
Oc = ( r ) ;o be= T ) In order to calculate the average stress carried by bro-
ken fiberg(Ty), itis necessary to construct the probabil-
ity distribution f (x) of the distancex of a fiber break
from the reference matrix crack plane, provided that
a break occurs within a distaned ;. For this condi-
tional probability distribution Phoenix and Raj deduced
the following form based on Weibull statistics [10]

wherel, is the reference length, and is the character-
istic strength of a single fiber of length. Physically,

3¢ is twice the sliding length around a fiber break that is
required to attain the characteristic stregsand hence
they satisfy the relatiod. =ro¢/t [16, 28]. This also
implies that fiber breaks spaced by more thaalong
the fiber direction do not influence each other directly, 1 T\m? X T\™1
and consequently, regions of the composite separateqI (x) = P(T)l¢ <0_c) XP _<ﬁ) <_> ’

Oc
longitudinally by more thai. are essentially indepen-

dent of each other [12—16]. In EquationP{T) gives ()
the cumulative probability that a fiber of characteristicwherex € [0, | 1]. Note that Phoenix and Raj [10] and
lengthé; breaks for a load less than or equallto Curtin [16] derived the constitutive behavior only for

For the formulation of the constitutive equations letthe case of loading. Hilét al. [25] used a unique dis-
us consider a matrix crack plane as reference. Here altibution of x to obtain the constitutive equations for
the applied load is carried by fibers, hence, the averageading, unloading and reloading, furthermore, Weigel
load perfiberigr/f . Some of the fibers might be broken et al. applied also a different form of (x). In the fol-
in the vicinity of the reference plane, that is why they lowing we derive constitutive equations based on the
can carry less stress than the average, which impliedistribution given by Equation 5 for loading, unload-
that the intact fibers have to pick up this excess loading, and reloading of the specimen.

Global Load Sharingneans the assumption thatthe ex- The averaging off- for the case of loading using
cess load due to fiber breaking is equally redistributedEquation 5 leads to
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L i L The constitutive behavior for the unloading case can
(To) :/ Ty () f(x) dx be obtained substituting Equation 8 into the general
0 form Equation 4 and employing" = E¢eY, wherecV
(UC Ml 1 - P(T) denotes the average strain during unloading
=T —) e
T P(T) oY _— ATY
T AT, P\ 2
and from Equation 4 the constitutive behavior for load- M M
ing can be cast into the form T\ ™ 1
X <—> } -1+ —P(TM)}, 9)
oc 2
GL o m+1 oc m+1
— = TP(T)(—) = EfeLP(T)< ) . _ _
f T Efeb and in terms of strain

(7) v , N e — Y

The upper script L corresponds to the loading of the f EfEM(EfeM> &P - 2enm
specimen. To obtain the strain dependence 'ofve
applied thatT = E¢eb, since the fibers are supposed Etem mH1 1

to be linearly elastic, and due to the parallel coupling x ( > -1+ 2 P(Tm) (- (10)
of fibers their average strain yields the strain of the
composite. The Ultimate Tensile Strengthrs is the
value ofo' at the maximum ob (") [10, 16, 25].

Oc

Hereey denotes the maximal strain reached before un-

. X / loading, i.e.Ty = Efem. Note that it is assumed im-

tHherle'}t’ th? behi\)l'oerOfUTs Is not studied, we refer to plicitly that during unloading no new fiber breaking
?Nhi;aut:wrligdiﬁg tgé specimen, the stress distributiof " occurATY takes its largest valu, at complete

) . U _ . . .

along broken fibers changes, since at the broken faclénloadmgo =0, forwhich Equation 9 yields

of a fiber the sliding happens in the opposite direction o\ ML 1

giving rise to a stress distribu'[icirr;fJ presentedin Fig. 3 Tm=—-2Tm (T—C> In [1 —5 P(TM)] (12)

[25, 30]. We parameterize the unloading process with M

ATY so that the actual stress levé in intact fibersis |t can be seen from Equation 10 that at complete un-

TY =Ty — AT", whereTy denotes the maximal value oading the specimen! = 0 remaining anelastic strain

of stress on intact fibers reached before the unloading, _ occurs. From Equations 10 and 11 one obtains

setsin ATV varies between 0 and a maximal valijg
discussed later. Averaging- with Equation 5 yields m+1 1

fEM
l¢ 2T, m+1
M) = [ ereaa= ot (52) (12)
0 M M which is a function of the maximum straég, reached
ATYY /Ty \ ™t before unloading and of the amount of dam&y@y).
Xy expl— oT (U—> The non-linear characteristicsgf, as a function oéy
M ¢ is illustrated in Fig. 4. It can be seen tha} is roughly
one order of magnitude smaller thagp.
1+ 1P(T ) qul=Pw) 8)
_ “Pp(My)} —Tv— M
2 P(Tm) 0.16 ————
0.14 - ]
m=
| 012 .
.bo 01 4
Q) i
wﬁ 0.08 | E
Y
: Eﬂ 0.06 - —
lf — 0.04 | N
X
TbU 002t -
0.0 L L
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Figure 3 The stresé'bU along a broken fiber during unloading the spec-
imen (full line). The dotted line indicates the stress distribution before E¢ emfo,
unIoadingTb'-, andTy denotes the maximal stress reached before the
unloading starts. The unloading process is parameterizexTdy such Figure 4 Normalized anelastic straiiean/oc Obtained from Equa-
that the stres3Y in unbroken fibers i§¥ =Ty — ATY. In the curve  tion 12 as a function of the normalized maximal strifey /o reached
of T\ the absolute value of the slope of each straight part js 2 before unloading.
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Figure 5 The stressTbR along a broken fiber during reloading the spec-
imen (full line). The dotted line indicates the stress before unloading
T, while the dashed line shows the stress distribufighin the most

unloaded situation from which reloading starts. The reloading procedure

is parameterized by TR such that the stresER in unbroken fibers is
TR =Ty — Tm + ATR.Inthe curve off } the absolute value of the slope
of each straight part isiZr.

The treatment of reloading is similar. When reload-

ing, the stres3,® along broken fibers changes, since the
direction of sliding at the broken face switches again to
the opposite direction. The reloading process is param

eterized byA TR such that the actual stre& on intact
fibers isTR=Ty — Tn+ ATR, whereATR [0, Tyn]

[25, 30] (see also Fig. 5). The average value of the stres:

on broken fibers reads as

2T m+1 T T m+1
(TR) = =2 il expl— — | ( X
P(Tm) \ Tm 2Tw ) \ oc
ATR TM m+-1
— e J— —_
Xp 2TM ( UC >

1— P(Tw)

1 R
+ 3P - TR

(13)
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Figure 6 The constitutive behavior determined by Equations 7, 10 and
14. Normalized stress as a function of normalized strain. It can be ob-
served that during unloading-reloading the specimen hysteresis loops
occur with decreasing unloading modulus and increasing opening.
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Figure 7 Characterization of the hysteresis loops. Normalized maxi-
mum openingE ¢ Ae/o¢ obtained from Equation 15, and the ratio of

and the constitutive behavior can be obtained in théhe unloading modulug and the initial Young modulus of the speci-

following form

R

° _2E o \"*l_(1 L om)
- = € — - —
f Fem EfGM 2 M
R _ E m+1
x exp| — [ S——M ( fEM) . (14)
2em o¢

Loading-unloading-reloading sequences determine

men f Es obtained from Equation 16 as a function of the normalized
maximal strainE ¢ ey /o reached before unloading.

m+1
) In

For illustration see Fig. 7. It has to be emphasized that
the non-linear character of the system during unloading
and reloading is due to the effect of broken fibers, i.e.
due to the second term of Equation 4. In the framework

(4 — P(Tw))?
8(2— P(Tv)) |

Oc

Ae = 2eM( (16)

Efem

by Equations 7, 10 and 14 are presented in Fig. 6. It canf dry bundle models [1-5, 32-35], where the effect
be observed that the constitutive behavior is non-lineapf broken fibers and the materix material is omitted,
and for unloading-reloading hysteresis loops occur wittthe behavior of the system under unloading-reloading

decreasing unloading modul&sand increasing open-

is completely linear and reversible, anelastic strain or

ing. In order to characterize the hysteresis loops wdiysteresis cannotappear. An extension ofthe dry bundle

calculated the unloading modul&sand the maximum
openingAce of the loops as a function of the maximum
strainey and the corresponding stregg

—P(Tm)
2In[1-3P(Tw)]

E=fE (15)

f

model to account for plastic effects was carried out by
Krajcinovic [3].

4. Potential drop
To describe the results of the DC drop measurementitis
reasonable to assume that the matrix material does not
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contribute to the overall conductivity of the sample, of fibers with at least one broken segment. The pref-

only the fibers are conducting, and hence, the reasoactor Al (¢)/Alc <1 implies that a certain fraction of

for the non-linear increase of the potential drop as &roken fibers still remains conducting.

function of the strain is the non-linear reduction of the The prefactorAl(¢)/Al¢ plays a crucial role dur-

conducting area due to the gradual breaking of fibers. ling unloading and reloading. It has been assumed that

order to explain the hysteresis loops®f) occurring no damage occurs during the unloading-reloading se-

during the unloading-reloading sequences we supposguences, i.e. in this regime the valueRpf (Tu) is con-

that not all the broken fibers are electrically insulating,stant, and consequently, the electric resistance varies

butitcan also happen that fibers which are mechanicallgue to the deformation of fibers and due to the clos-

disconnected are still conducting due to the closing ofng and opening of cracks captured by the change of

cracks. We make the assumption that the number oAl (¢)/Alc. For simplicity, in the derivation oR(¢) we

insulating fibers is proportional to the number of brokenneglect that the electric resistance due to the closing of

fibers and to the average crack opening displacementcracks can depend on the actual stress, and generally it
It has been shown in the preceding section that fois higher than the resistance of intact fibers.

the constitutive behavior and strength of the composite Assuming linear elastic behavior for fibers their

the relevant length scale &. However, for the elec- length L(¢) and cross sectior\;(¢) can be obtained

tric resistance, the relevant length scale is the lengtlas

L, of the specimen. For the derivation of the electric

resistance the specimen can be treated as a series of L(e) = Lo(1 + €), (21)

segments of length. and of numben=L,/8.. Since

P(T) provides the probability of fiber breaking in a Ar(€) = Aro(l — 2ve), (22)

single segment, the probabilify, (T) that a fiber of

lengthL, and of number of segmemsreaks ataload and the potential drop reads as

less than or equal td, (i.e. at least one break occurs

along the fiber), can be written as L(e)

Ncond(€) At (€) . @3)

U(e) = lop

P (T)=1—(1- P(M)". a7
wherev designates the Poisson ratio of fibers, and
Using the expression d?(T) Equation 2,P , can be s the fixed electric current maintained on the sample.
cast in the following expression Finally, AU can be expressed as

m+1 1 142
P (T)=1- exp|:—ﬁ<l) :|’ (18) AU =U(e) —Up = Uo[% _ 1:|’

(SC O¢c Al
(24)
which has the same functional form B§T). . . .
The electric resistancB(e) of the specimen can be WhereUo= loplLo/NAt, is the potential drop in the

expressed as initial state.
When the damage is sufficiently small, Equation 24

L(e) L(e) 9 can be cast into the approximate form, which is easier
= . 1
2O~ " Nerd A @) (19)  to analyze

R(e) =p

Al(e)
Al

Wh.erep de_notes the specific resistance of th_e fiber ma- AU ~ U, [€(l+ 20) +
terial, L (¢) is the actual length of a fiber at a given strain

€, andA(e) denotes the total conducting cross sectional

area of the specimen. The second part of Equation 18 can be observed that the first term of Equation 25
demonstrates that the reduction of the conducting aredescribes the dependence®tl due to stretching of

A with increasing load is due to two reasons. On thdfibers, while the second term is the irreversible contri-
one hand, the elongation of the specimen gives rise tbution of fiber failure. In the absence of fiber breaking,
decrease of the cross section of the individual filders AU would be a linear function af and it would behave
due to their non-zero Poisson ratio. On the other handeversible during the unloading-reloading sequences.
the subsequent breaking of fibers under gradual loadNon-linearity arises due to fiber breaking and the slid-
ing results in further reduction of the conducting area.ing fiber-matrix interface. The relative importance of
Ncond(€) designates the number of conducting fibersthe two mechanisms, i.e. deformation and damage,
for which we introduce the following form changes at a crossover straip whereeq (14 2v) =
(Al(ecr)/ Alg) P (Etecr). For deformations « ec the
linear term is relevant, while foe > ¢, the second
term dominates the sum giving rise to a non-linear in-
crease and hysteresis during unloading-reloading. In
where Al (¢) denotes the crack opening displacementthe completely unloaded case the electric resistance is
and Al is the critical value ofAl reached at ultimate determined by the damad® (Twu), by the remaining
failure. In Equation 20 the teridP,_ (Tv) yieldstheav-  anelastic deformatioa,,, and by the closing of cracks
erage number of broken fibers, i.e. the average numbefesribed byAl /Al..

PLO(TM)] (25)

Al(e)
Al

Ncond(e) =N- NPLO(TM)y (20)
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Following Ref. [25] the crack opening displacement 100 — T T T T T T T
Al can be defined as the displacement difference be o[
tween a broken face and an adjacent unbroken fibel

i.e. sor

T— (T rT(T — (To)

Al =1 = 26 S 60Ff .
"E, 2E; (26) =
S osop -
The specific forms ofAl for the case of loading, un- & 4o} -

loading and reloading can be obtained by substituting
Equations 6, 8 and 13 into the general form Equation 26

m+1 |/,
Al = B(GL)Z[l— P(TM)<.?—C) ' } (27) LYy
M

0.0

—--—- experiment
— theory

21 1 1 1 1 1 1 1 1
0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002

€
m+1
Al u_ Be 6U — 2 2 Figure 8 Comparison of the constitutive behavior determined by Equa-
M M Tm tions 7, 10 and 14 to the experimental results. The values of the fitting

parameters are; =460 MPa andn=1.85. For the other parameters

U m+1 see Table I.
€M — € Twm
Lo () G

1 According to the experiments, during the manufac-
—1+ 2P | Y, (28) turing process of 'ghe composite not only fche matrix
2 material gets multiply cracked but a certain fraction

of fibers also breaks [19-24]. This initial damage of
fibers and its effect on the development of damage un-

AIR = Bey {GR — 2em ( Oc ) der loading is very hard to quantify. Furthermore, our
model calculation is based on the assumption of global

load sharing. It is well known about GLS that it over

wl1-(1- }P(T ) estimates the ultimate tensile strengtbrs of com-

2 VM posites, since it neglects stress concentration around
failed fibers. Due to these reasons the constitutive be-

R ey \/Tu\™? havior was fitted such that the volume fractiband the
X exp|— <—> , (29

Young modulusE; of fibers were considered as input
parameters from Table I, and the value of the character-
istic strengtho,, and the Weibull modulum of fibers
were varied until best fit was achieved. The product
fE+ gives the Young modulus of the composite in the
fhitial state, i.e. the initial slope of the loading curve.
Hence, in the fitting this has to be fixed and the shape
of the theoretical curve Equations 7, 10 and 14 is con-
trolled only byo, andm. The result of the fitting pro-
cedure is presented in Fig. 8. The values of the fitting

" . Iparameters are; =460 MPa andn=1.85. It can be
In the present chapter the constitutive behavior dete dbserved in Fig. 8 that the quality of the fit is satis-
mined by Equations 7, 10 and 14 and the potential droq |

described by Equations 24, 25 and 2729 of the mode[f\ctory, there is larger deviation only in the vicinity of

i1 b dtoth . | its. Th lobal failure. In this region the experimental curve is
will be compared to the experimental results. The meag, .o yitle in the sense that it is practically straight,

S_Wed \]ialﬁes of th_e mos;_;)mportagt ﬁharicfr'sé'/%qgaé\ivhile thefitted curve has a certain curvature. Using a so-
tiies of the constituent fibers and that of the C/C-SICigticated simulation technique, it was shown in Ref.

composite are summarized in Table |. [14] that decreasing the range of stress redistribution,
i.e. making load sharing more and more localized, the

ZEM O¢

where the common multiplication factor i8=
rE¢/(2t P(Tm)). Finally, the potential dropAU is
characterized by Equations 24, 25 and 27-29. It ha
to be emphasized that the formafY and AIR results

in hysteresis loops oAU during unloading-reloading.

5. Comparison to experiments

TABLE | The parameter values ultimate tensile strengiéts decreases and the overall
constitutive behavior of the composite becomes more
Parameter Symbol  Unit  Value brittle. Hence, it is reasonable to assume that the dis-
Young modulus of C fibers E, GPa 230 crepancy between the fitted _and the experlmenftal curve
Characteristic strength of C fibers oo MPa 3530 is due to the neglect of possible stress localization. The
Weibull modulus of C fibers m 1 33+06 Vvalue ofo. obtained from the fitting procedure cannot
Young modulus of composite E GPa  70-80 be comparedta, in Table |, because in the experiments
Ultimate tensile strength of composite oyTs MPa  90-170 the inding resistance was not measured.
Volume fraction of fibers f 1 0.32

Since the value aof. cannot be determined in the ab-

Initial potential d u vV 185 . )
e porente’ op ° " sence of, for the fitting of the potential drop we set the
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r 7 due to the closing of cracks can depend on the actual
251 | 52 stress level, and in general, it is higher than the resis-
X j ,»*‘":f“"j 7 tance of intact fibers. The value of=L,/3c, which
ok ! o /’ 1 was set to 1 for the fitting, can also slightly affect the
“T ) e shape of the theoretical curves but not the overall func-
> ,' = "”j7 1 tional behavior.
E 1sh i g . The experimental results obtained with different
i) j specimens show a statistical variation, since the behav-
2 i - ior of the material strongly depends on the microstruc-
Ry = gid 1  turecontrolled by th facturi Si
! y the manufacturing process. Since our
’/ rd 1 model is based on average quantities, the fitting of dif-
05| /// 4 ferent experiments result in a certain variation of the
fitting parameters.
0.0 . . . . . . . .

00 05 10 15 20 25 30 35 40 . .
6. Discussion

{¢]
€ [/oo] In the present paper we made an attempt to give a
theoretical interpretation of the experimental results

Figure 9 Comparison of the potential drop determined by Equa- : : Qi
tions 24, 25 and 27-29 to the experimental results. Experimental reponcemlng the damage development in the C/C-SiC

sults: full square: loading, full circle: complete unloading. Theoretical re- CompOSite under uniaxial CyC”C Ioading-unloading-re-
sults: dashed line: loading, dotted-line: unloading-reloading sequencedpading. Our approach is based on statistical microme-
dashed-dotted line: complete unloading. The value of the fitting paramechanical models of the failure of composites, and cap-
ters arerc = 1900 MPaandh = 1.8. For the other parameters see Table |. {,rag quasi-periodic matrix cracking, gradual breaking
of fibers and sliding of fibers relative to the matrix as
failure mechanism within a global load sharing frame-
value ofn=L,/3. to 1 in Equations 24 and 25. Then, work. The constitutive behavior of the material and the
the potential drop Equations 24, 25 and 27—-29 can beotential drop was reproduced by the model calcula-
fitted to the experimental results in such a way that theions with a reasonable accuracy. The theoretical results
value of the potential dropJ, measured in the initial are general, they can be applied to study the behavior
state, the Young moduluE and Poisson rati@ of  of other composites as well.
fibers are considered as input parameters and again  The question naturally arises whether it is possible
andm control the overall shape of the theoretical curve.to introduce a damage variable in terms of the potential
Note thatJ, determines the slope @fU in the vicinity  drop AU. It follows from our treatment that in sim-
of e ~ 0. The best fit obtained is presented in Fig. 9. Itple cases the damage occurring in fiber bundles can be
can be observed that the model calculations are in redully characterized byAU measured during the load-
sonable agreement with the experimental results. Thiang process, however, in more realistic situations it can
value of the fitting parameters asg= 1900 MPa and happen that the electric resistance of the specimen is
m=1.8. This value ob is different from the value ob- also strongly affected by matrix cracking occurring in
tained by fitting the constitutive behavior, since the twoboth the transversal and longitudinal plys, and by the
experiments were carried out on different specimengomplicated conducting contacts between the fibers of
having different values of failure strength. The valuesthe woven plys. In these cases the measurement of the
of m obtained from the two fittings agree fairly well.  potential drop does not provide sufficient information
It was found in the experiments that the potentialfor the characterization of damage.
drop measured during loading (full squares in Fig. 9) The main limitation of the present approach is the as-
can be well fitted with a power law, i.&U ~¢2. The  sumption of global load sharing. Besides the possible
value of the exponerd scatters between 1 and 2 de- effects of localized load sharing mentioned in the paper,
pending on the sample, and itas= 1.42 for the spe- microstructural analysis of damaged specimens showed
cific case presented in Fig. 9. The theoretical curve cathat the microcracks occurring in fiber bundles have an
also be approximated with a power law with an expo-interesting spatial distribution [23], which cannot be
nent 1.54, which is consistent with the experimental reunderstood in a global load sharing framework due to
sult. In the case of complete unloading the experimentathe neglect of any spatial correlations. Furthermore, the
data (full circles) were fitted with a straight line. The internal geometry of the composite has a hierarchical
theoretical curve (dashed-dotted line) seems to agrestructure, i.e. the fibers are organized into subbundels,
with this functional behavior. The unloading-reloading the subbundles form bundles, then plies, and finally the
curves in Fig. 9 are somewhat steeper than the experspecimen is built up from plies. This hierarchical or-
mentally observed ones. In our calculations those fiberganization shows up also in the damage development
in the woven structure, which are perpendicular to than the composite. That is why, for a quantitative grasp
load direction were completely omitted. However, it of these phenomena, it is necessary to work out a scale
can also happen that there are conducting contacts bdependent description, based on real space renormal-
tween fibers perpendicular to each other. This effect iszation, in the framework of local load sharing.
difficult to quantify, but it can be partly responsible for  To describe more complicated loading situations oc-
slight discrepancies of the theory and the experimentsurring in practical applications (e.g. multiaxial load)
Furthermore, we neglected that the electric resistanceur method has to be improved by taking into account
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both plys (the transversal and the longitudinal one) withi1
a proper coupling in between. In these loading cases

additional damage mechanisms are activated (matrix*

cracking, delamination, debonding) interacting with .

Further experimental and theoretical investigations in
this direction are in progress.

Recently, it has been shown that the size distribution
of avalanches of fiber breaks in dry fiber bundle models

. J. BEYERLEIN ands. L. PHOENIX, J. Mech. Phys. Solids
44(1996) 1997.

M. IBNABDELJALIL andW. A. CURTIN, Int. J. Solids
Struct 34 (1997) 2649.

. X : .W. A. CURTIN, J. Mech. Phys. Solidél (1993) 217.
each other, the treatment of which is rather complicated; 4.

15.

shows universal power law behavior [32—35]. From the; g,
view point of statistical physics, it would be very inter- 19.

esting to see how robust the universality is with respect

to the effect of matrix material, which can be studied?®

in the model presented here.
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