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We present a theoretical investigation of damage development in Ceramic Matrix
Composites (CMC’s) before catastrophic failure under gradual loading conditions. The aim
of the work is to give a theoretical interpretation of the experimental results on the
development of damage in the C/C-SiC composite obtained by cyclically loading, unloading,
and reloading a planar specimen. Our approach is based on statistical, micromechanical
models of the failure of CMC’s in the framework of global load sharing, where the failure
mechanism includes quasi-periodic matrix cracking, gradual breaking of fibers, and sliding
of broken fibers with respect to the matrix. It is demonstrated that the non-linear
characteristics of the constitutive behavior and the potential drop measured under uniaxial
loading of a planar C/C-SiC specimen can be described with reasonable accuracy in the
framework of statistical, micromechanical models. C© 2000 Kluwer Academic Publishers

1. Introduction
Ceramic Matrix Composites (CMC’s) have a great tech-
nological importance due to their good mass specific
properties, good performance at high temperature and
relatively low production costs. In the study of the fail-
ure of CMC’s the main interest is in the strength distri-
bution of the material and in the dependence of strength
on the sample size [1–18]. The characterization of the
damage state and damage development in CMC’s be-
fore catastrophic failure under gradual loading condi-
tions has also received much attention especially by the
experimental community [18–29]. In the past decade a
large amount of theoretical efforts have been devoted
to the study of reliability and size scaling of compos-
ite’s strength, and to clarify how the ultimate tensile
strength depends on the underlying constituent proper-
ties of fibers, matrix and fiber-matrix interface [7–18].
Sophisticated numerical techniques have been devel-
oped which enable also large scale calculations of the
strength of composites, and by now this problem is
well understood [11–17]. However, much less is known
about the behavior of CMS’s before catastrophic fail-
ure occurs, under gradual (cyclic) loading conditions. A
large amount of experimental results [18–29] have been
accumulated over the past years but a comprehensive
theoretical understanding is still lacking.

Recently, a conductivity (DC potential drop) based
non-destructive test-method was developed for the pur-
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pose of damage state evaluation for composites, and
it was applied to the carbon fiber reinforced carbon-
silicon-carbide C/C-SiC composite [19]. Since the C/C-
SiC is a candidate material to be used in aerospace
applications and also in power plants for ultra high tem-
perature heat exchangers, the evaluation of its damaged
state is of crucial interest. In the manufacturing pro-
cess of C/C-SiC liquid silicon is poured into a two-
dimensional woven C/C-preform to form a silicon-
carbide matrix in order to prevent the C fibers from
oxidation. For a detailed description of the manufac-
turing process and for the mechanical properties of
C/C-SiC see Ref. [19]. The most important character-
istic quantities of C fibers and that of the composite are
summarized in Table I.

The experiments were performed under stress-
controlled conditions such that a planar C/C-SiC spec-
imen was cyclically loaded, unloaded, and reloaded
while a fixed electric currentIo was maintained between
two cross sections of the specimen. To obtain infor-
mation about the damage development under gradual
loading, the macroscopic constitutive behaviorσ (ε)
and the potential dropU between the two sections of
the specimen were monitored. Since the matrix mate-
rial SiC practically does not contribute to the electric
conductivity of the composite, the potential drop mea-
surement provides direct information about the dam-
age occurring in fibers and fiber bundles, while the
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constitutive behavior contains also the complicated ef-
fect of the matrix and fiber-matrix interface. The most
important experimental findings can be summarized as
follows [19–24]: (a) The macroscopic constitutive be-
haviorσ (ε) is non-linear with a decreasing unloading
modulus. During the unloading-reloading sequences
σ (ε) exhibits hysteresis with increasing opening. At
complete unloadingσ = 0 remaining anelastic strain
εanoccurs. (b) The difference1U of the potential drops
U (ε) andUo measured at a strainε and at the initial state
between two sections of the specimen, is a non-linearly
increasing function ofε. It was found that1U (ε) can be
well fitted with a power law with an exponent between 1
and 2. During the unloading-reloading sequences hys-
teresis of1U with increasing opening occurs, and at
complete unloading1U as a function of the anelastic
strainεan can be well approximated by a straight line.

The aim of the present paper is to give a theoreti-
cal description of the experimental results on the dam-
age development in C/C-SiC composite under uniaxial
loading focusing on the constitutive behaviorσ (ε) and
on the potential drop1U (ε) as a function of strainε.
Our approach is based on statistical, micromechanical
models of composites’s failure, which were recently
studied in the context of size scaling of the global
strength of composites [7–17]. In the formulation of the
constitutive equations we build mainly upon the work
of Phoenix and Raj [10], Curtin [15, 16], Hildet al. [25]
and Weigelet al. [26]. The failure mechanism of our
model captures quasi-periodic matrix cracking, gradual
breaking of fibers and sliding of fibers relative to the ma-
trix. We show that based on these simple assumptions
in the framework of the global load sharing approach
it is possible to explain the observed non-linear char-
acteristics of the constitutive behavior and that of the
potential drop. It has to be emphasized that our method
of investigation is general, it can be applied to study
damaging of other composites as well, and it can also
serve as a basis for the formulation of material laws in
the framework of continuum damage mechanics [25].

After giving a short summary of the main ideas of
our modeling in Sec. 2, the constitutive equations of
the material and the behavior of the potential drop will
be derived in Secs. 3 and 4, respectively. In Sec. 5 we
compare the results of the model calculations to the
experimental ones. In Sec. 6 the limitations of our ap-
proach and possible future improvements will be dis-
cussed.

2. Modeling damage development
The evolution of damage and the tensile failure of fiber
reinforced composites depends primarily on two fac-
tors, i.e. on the strength distribution of the individual
fibers and on the mechanics of load transfer from bro-
ken fibers to the unbroken ones. The strength distri-
bution of fibers can be well established a priori, but
the details of the load transfer mechanism depend on
many constituent properties and, in particular, on the
detailed mechanics of the fiber-matrix interface. Hence,
it is very difficult to obtain it correctly if more than
one fiber is broken. Among the several theoretical ap-
proaches, one simplification that makes the problem

analytically tractable is the assumption of Global Load
Sharing (GLS), which means that after each fiber break-
ing the stress is equally distributed on the intact fibers
neglecting stress enhancement in the vicinity of failed
regions [1–10, 15–18]. This approach implies ‘infinite’
range interaction between fibers so it corresponds to
a mean field approach. The other limiting case is ap-
plying Local Load Sharing (LLS), where the stress is
redistributed in the vicinity of a failed fiber giving rise
to high stress concentration around failed regions [6–8,
11–14].

It is reasonable to assume that when the C/C-SiC
composite with woven structure is loaded parallel to
one of the main fiber directions, the perpendicular fibers
carry practically no load. That is why, as a first step of
the model construction we neglect the woven struc-
ture and consider only an unidirectional ensemble of
fibers. In the case of the C/C-SiC composite, due to the
high residual stresses generated by thermal expansion
mismatch and matrix porosity, the silicon carbide ma-
trix is multiply cracked even during the manufacturing
process [19]. Under elongation further cracks appear
in the matrix perpendicular to the loading direction. It
is verified experimentally that rather than propagating
through the fibers, the fiber-matrix interface debonds
and the fibers slide relative to the matrix with sliding
resistanceτ . This implies that over a lengthlm the stress
in the matrix builds up linearly to the original level giv-
ing rise to new cracking. Thus, it can be considered that
after reaching a certain stress valueσmc the matrix is
quasi-periodically cracked and cannot support further
load, therefore, all the additional load is carried by the
fibers. In the experiments the Young-modulus of the
woven carbon fiber network without the matrix mate-
rial was found to be equal to the Young-modulus of
the complete C/C-SiC composite [22, 23], which also
supports the above argument.

In the following we show that based on these sim-
ple model assumptions in the framework of global load
sharing it is possible to reproduce the qualitative behav-
ior of the potential drop as a function of the load, and
the macroscopic constitutive behavior of the C/C-SiC
composite.

3. Loading-unloading-reloading sequences
in the framework of GLS

In the derivation of the constitutive equations we fol-
low the ideas presented in Refs. [10, 16, 25]. After the
above simplifying assumptions, the system under con-
sideration is composed ofN parallel, cylindrical fibers
with lengthLo, radiusr and cross sectionA f o. Let us
denotef the ratio of the total cross sectional area of the
fibers and the total cross section of the specimenAo, i.e.
f =NAf o/Ao the volume fraction of fibers. The fibers
are considered to be linearly elastic until breaking (brit-
tle rupture) with identical Young-modulusE f .

When a fiber breaks the load carried by the fiber
drops down to zero at the position of the break. Similar
to the case of matrix cracking, the fiber-matrix interface
debonds and the stress builds up in the fiber through the
stress transfer across the sliding fiber-matrix interface.
During the loading process, the stress in a broken fiber
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Figure 1 The stressTL
b along a broken fiber under loading. The sliding

lengthl f is also indicated. The slope ofTL
b is 2τ/r .

TL
b as a function of the distancex from the break can

be written as

TL
b (x) = 2τ

r
x, (1)

whereτ denotes the sliding resistance at the fiber ma-
trix interface [16, 28, 30, 31]. The upper scriptL cor-
responds to the loading of the specimen. Equation 1
also implies thatTL

b reaches the stress valueT of intact
fibers at a sliding lengthl f = rT/2τ , as illustrated in
Fig. 1.

For the statistical variation of fiber strength a Weibull
distribution is assumed

P(T) = 1− exp

[
−
(

T

σc

)m+1
]
, (2)

where m denotes the Weibull modulus determining
the variability of strength, andσc is the characteristic
strength of fibers embedded in a matrix. The character-
istic length scaleδc associated toσc plays also a crucial
role

σc =
(

loσm
o τ

r

)1/m+1

, δc =
(
σorl

1/m
o

τ

)m/m+1

, (3)

wherelo is the reference length, andσo is the character-
istic strength of a single fiber of lengthlo. Physically,
δc is twice the sliding length around a fiber break that is
required to attain the characteristic stressσc, and hence
they satisfy the relationδc= rσc/τ [16, 28]. This also
implies that fiber breaks spaced by more thanδc along
the fiber direction do not influence each other directly,
and consequently, regions of the composite separated
longitudinally by more thanδc are essentially indepen-
dent of each other [12–16]. In Equation 2P(T) gives
the cumulative probability that a fiber of characteristic
lengthδc breaks for a load less than or equal toT .

For the formulation of the constitutive equations let
us consider a matrix crack plane as reference. Here all
the applied load is carried by fibers, hence, the average
load per fiber isσ/ f . Some of the fibers might be broken
in the vicinity of the reference plane, that is why they
can carry less stress than the average, which implies
that the intact fibers have to pick up this excess load.
Global Load Sharingmeans the assumption that the ex-
cess load due to fiber breaking is equally redistributed

Figure 2 Illustration of the distribution of fiber breaks (crosses) in the
vicinity of the reference matrix crack plane. Fibers which do not have a
break within a distancel f are considered to be intact (I), otherwise they
are considered to be broken (B).

on all the intact fibers, and stress concentration around
failed fibers is neglected. According to the above expla-
nation, those fibers are considered to be intact which do
not have a break within the distance±l f from the refer-
ence plane, however, the broken fibers carry also some
load at the reference crack plane due to Equation 1, see
also Fig. 2. WhenT denotes the average load on in-
tact fibers, the general form of the constitutive equation
reads as

σ

f
= T(1− P(T))+ 〈Tb〉P(T), (4)

where〈Tb〉 denotes the average stress carrying capacity
of broken fibers within a distancel f from the reference
plane,P(T) and 1− P(T) are the fraction of broken and
intact fibers, respectively [10, 15, 16]. Specific forms
of the constitutive behavior for the case of loading, un-
loading and reloading can be obtained from Equation 4
by plugging in the proper form of〈Tb〉.

In order to calculate the average stress carried by bro-
ken fibers〈Tb〉, it is necessary to construct the probabil-
ity distribution f (x) of the distancex of a fiber break
from the reference matrix crack plane, provided that
a break occurs within a distance±l f . For this condi-
tional probability distribution Phoenix and Raj deduced
the following form based on Weibull statistics [10]

f (x) = 1

P(T)l f

(
T

σc

)m+1

exp

[
−
(

x

l f

)(
T

σc

)m+1
]
,

(5)

wherex ∈ [0, l f ]. Note that Phoenix and Raj [10] and
Curtin [16] derived the constitutive behavior only for
the case of loading. Hildet al. [25] used a unique dis-
tribution of x to obtain the constitutive equations for
loading, unloading and reloading, furthermore, Weigel
et al. applied also a different form off (x). In the fol-
lowing we derive constitutive equations based on the
distribution given by Equation 5 for loading, unload-
ing, and reloading of the specimen.

The averaging ofTL
b for the case of loading using

Equation 5 leads to
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〈
TL

b

〉 = ∫ l f

0
TL

b (x) f (x) dx

= T

[(
σc

T

)m+1

− 1− P(T)

P(T)

]
, (6)

and from Equation 4 the constitutive behavior for load-
ing can be cast into the form

σ L

f
= TP (T)

(
σc

T

)m+1

= E f ε
L P(T)

(
σc

E f εL

)m+1

.

(7)

The upper script L corresponds to the loading of the
specimen. To obtain the strain dependence ofσ L we
applied thatT = E f ε

L, since the fibers are supposed
to be linearly elastic, and due to the parallel coupling
of fibers their average strain yields the strain of the
composite. The Ultimate Tensile StrengthσUTS is the
value ofσ L at the maximum ofσ L(εL) [10, 16, 25].
Here, the behavior ofσUTS is not studied, we refer to
the literature [10, 16].

When unloading the specimen, the stress distribution
along broken fibers changes, since at the broken face
of a fiber the sliding happens in the opposite direction
giving rise to a stress distributionTU

b presented in Fig. 3
[25, 30]. We parameterize the unloading process with
1TU so that the actual stress levelTU in intact fibers is
TU= TM −1TU, whereTM denotes the maximal value
of stress on intact fibers reached before the unloading
sets in.1TU varies between 0 and a maximal valueTm,
discussed later. AveragingTU

b with Equation 5 yields

〈
TU

b

〉 = ∫ l f

0
TU

b (x) f (x) dx = 2TM

P(TM)

(
σc

TM

)m+1

×
{

exp

[
−
(
1TU

2TM

)(
TM

σc

)m+1
]

− 1+ 1

2
P(TM)

}
− TU 1− P(TM)

P(TM)
. (8)

Figure 3 The stressTU
b along a broken fiber during unloading the spec-

imen (full line). The dotted line indicates the stress distribution before
unloadingTL

b , andTM denotes the maximal stress reached before the
unloading starts. The unloading process is parameterized by1TU such
that the stressTU in unbroken fibers isTU= TM −1TU. In the curve
of TU

b the absolute value of the slope of each straight part is 2τ/r .

The constitutive behavior for the unloading case can
be obtained substituting Equation 8 into the general
form Equation 4 and employingTU= E f ε

U, whereεU

denotes the average strain during unloading

σU

f
= 2TM

(
σc

TM

)m+1
{

exp

[
−
(
1TU

2TM

)

×
(

TM

σc

)m+1
]
− 1+ 1

2
P(TM)

}
, (9)

and in terms of strain

σU

f
= 2E f εM

(
σc

E f εM

)m+1
{

exp

[
−
(
εM − εU

2εM

)

×
(

E f εM

σc

)m+1
]
− 1+ 1

2
P(TM)

}
. (10)

HereεM denotes the maximal strain reached before un-
loading, i.e.TM = E f εM. Note that it is assumed im-
plicitly that during unloading no new fiber breaking
can occur.1TU takes its largest valueTm at complete
unloadingσU= 0, for which Equation 9 yields

Tm = −2TM

(
σc

TM

)m+1

ln

[
1− 1

2
P(TM)

]
. (11)

It can be seen from Equation 10 that at complete un-
oading the specimenσU= 0 remaining anelastic strain
εan occurs. From Equations 10 and 11 one obtains

εan= εM

{
1+ 2

(
σc

E f εM

)m+1

ln

[
1− 1

2
P(TM)

]}
,

(12)

which is a function of the maximum strainεM reached
before unloading and of the amount of damageP(TM).
The non-linear characteristics ofεan as a function ofεM
is illustrated in Fig. 4. It can be seen thatεan is roughly
one order of magnitude smaller thanεM.

Figure 4 Normalized anelastic strainE f εan/σc obtained from Equa-
tion 12 as a function of the normalized maximal strainE f εM/σc reached
before unloading.
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Figure 5 The stressTR
b along a broken fiber during reloading the spec-

imen (full line). The dotted line indicates the stress before unloading
TL

b , while the dashed line shows the stress distributionTU
b in the most

unloaded situation from which reloading starts. The reloading procedure
is parameterized by1TR such that the stressTR in unbroken fibers is
TR= TM − Tm+1TR. In the curve ofTR

b the absolute value of the slope
of each straight part is 2τ/r .

The treatment of reloading is similar. When reload-
ing, the stressTR

b along broken fibers changes, since the
direction of sliding at the broken face switches again to
the opposite direction. The reloading process is param-
eterized by1TR such that the actual stressTR on intact
fibers isTR= TM − Tm+1TR, where1TR∈ [0, Tm]
[25, 30] (see also Fig. 5). The average value of the stress
on broken fibers reads as

〈
TR

b

〉 = 2TM

P(TM)

(
σc

TM

)m+1
{

exp

[
−
(

Tm

2TM

)(
TM

σc

)m+1
]

− exp

[
−
(
1TR

2TM

)(
TM

σc

)m+1
]

+ 1

2
P(TM)

}
− TR 1− P(TM)

P(TM)
, (13)

and the constitutive behavior can be obtained in the
following form

σR

f
= 2E f εM

(
σc

E f εM

)m+1
{

1−
(

1− 1

2
P(TM)

)

× exp

[
−
(
εR− εM

2εM

)(
E f εM

σc

)m+1
]}
. (14)

Loading-unloading-reloading sequences determined
by Equations 7, 10 and 14 are presented in Fig. 6. It can
be observed that the constitutive behavior is non-linear
and for unloading-reloading hysteresis loops occur with
decreasing unloading modulusE and increasing open-
ing. In order to characterize the hysteresis loops we
calculated the unloading modulusE and the maximum
opening1ε of the loops as a function of the maximum
strainεM and the corresponding stressTM

E = f E f
−P(TM)

2 ln
[
1− 1

2 P(TM)
] , (15)

Figure 6 The constitutive behavior determined by Equations 7, 10 and
14. Normalized stress as a function of normalized strain. It can be ob-
served that during unloading-reloading the specimen hysteresis loops
occur with decreasing unloading modulus and increasing opening.

Figure 7 Characterization of the hysteresis loops. Normalized maxi-
mum openingE f1ε/σc obtained from Equation 15, and the ratio of
the unloading modulusE and the initial Young modulus of the speci-
men f E f obtained from Equation 16 as a function of the normalized
maximal strainE f εM/σc reached before unloading.

1ε = 2εM

(
σc

E f εM

)m+1

ln

[
(4− P(TM))2

8(2− P(TM))

]
. (16)

For illustration see Fig. 7. It has to be emphasized that
the non-linear character of the system during unloading
and reloading is due to the effect of broken fibers, i.e.
due to the second term of Equation 4. In the framework
of dry bundle models [1–5, 32–35], where the effect
of broken fibers and the materix material is omitted,
the behavior of the system under unloading-reloading
is completely linear and reversible, anelastic strain or
hysteresis cannot appear. An extension of the dry bundle
model to account for plastic effects was carried out by
Krajcinovic [3].

4. Potential drop
To describe the results of the DC drop measurement it is
reasonable to assume that the matrix material does not
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contribute to the overall conductivity of the sample,
only the fibers are conducting, and hence, the reason
for the non-linear increase of the potential drop as a
function of the strain is the non-linear reduction of the
conducting area due to the gradual breaking of fibers. In
order to explain the hysteresis loops of1U occurring
during the unloading-reloading sequences we suppose
that not all the broken fibers are electrically insulating,
but it can also happen that fibers which are mechanically
disconnected are still conducting due to the closing of
cracks. We make the assumption that the number of
insulating fibers is proportional to the number of broken
fibers and to the average crack opening displacement.

It has been shown in the preceding section that for
the constitutive behavior and strength of the composite
the relevant length scale isδc. However, for the elec-
tric resistance, the relevant length scale is the length
Lo of the specimen. For the derivation of the electric
resistance the specimen can be treated as a series of
segments of lengthδc and of numbern= Lo/δc. Since
P(T) provides the probability of fiber breaking in a
single segment, the probabilityPLo(T) that a fiber of
lengthLo and of number of segmentsn breaks at a load
less than or equal toT , (i.e. at least one break occurs
along the fiber), can be written as

PLo(T) = 1− (1− P(T))n. (17)

Using the expression ofP(T) Equation 2,PLo can be
cast in the following expression

PLo(T) = 1− exp

[
− Lo

δc

(
T

σc

)m+1
]
, (18)

which has the same functional form asP(T).
The electric resistanceR(ε) of the specimen can be

expressed as

R(ε) = ρ L(ε)

A(ε)
= ρ L(ε)

Ncond(ε)A f (ε)
, (19)

whereρ denotes the specific resistance of the fiber ma-
terial,L(ε) is the actual length of a fiber at a given strain
ε, andA(ε) denotes the total conducting cross sectional
area of the specimen. The second part of Equation 19
demonstrates that the reduction of the conducting area
A with increasing load is due to two reasons. On the
one hand, the elongation of the specimen gives rise to
decrease of the cross section of the individual fibersA f

due to their non-zero Poisson ratio. On the other hand,
the subsequent breaking of fibers under gradual load-
ing results in further reduction of the conducting area.
Ncond(ε) designates the number of conducting fibers,
for which we introduce the following form

Ncond(ε) = N − 1l (ε)

1lc
NP Lo(TM), (20)

where1l (ε) denotes the crack opening displacement,
and1lc is the critical value of1l reached at ultimate
failure. In Equation 20 the termNPLo(TM) yields the av-
erage number of broken fibers, i.e. the average number

of fibers with at least one broken segment. The pref-
actor1l (ε)/1lc≤ 1 implies that a certain fraction of
broken fibers still remains conducting.

The prefactor1l (ε)/1lc plays a crucial role dur-
ing unloading and reloading. It has been assumed that
no damage occurs during the unloading-reloading se-
quences, i.e. in this regime the value ofPLo(TM) is con-
stant, and consequently, the electric resistance varies
due to the deformation of fibers and due to the clos-
ing and opening of cracks captured by the change of
1l (ε)/1lc. For simplicity, in the derivation ofR(ε) we
neglect that the electric resistance due to the closing of
cracks can depend on the actual stress, and generally it
is higher than the resistance of intact fibers.

Assuming linear elastic behavior for fibers their
length L(ε) and cross sectionA f (ε) can be obtained
as

L(ε) = Lo(1+ ε), (21)

A f (ε) = A f o(1− 2νε), (22)

and the potential drop reads as

U (ε) = Ioρ
L(ε)

Ncond(ε)A f (ε)
. (23)

whereν designates the Poisson ratio of fibers, andIo
is the fixed electric current maintained on the sample.
Finally,1U can be expressed as

1U = U (ε)−Uo = Uo

[
(1+ ε)(1+ 2νε)

1−1l (ε)
1lc

PLo(TM)
− 1

]
,

(24)

whereUo= IoρLo/NA f o is the potential drop in the
initial state.

When the damage is sufficiently small, Equation 24
can be cast into the approximate form, which is easier
to analyze

1U ≈ Uo

[
ε(1+ 2ν)+ 1l (ε)

1lc
PLo(TM)

]
. (25)

It can be observed that the first term of Equation 25
describes the dependence of1U due to stretching of
fibers, while the second term is the irreversible contri-
bution of fiber failure. In the absence of fiber breaking,
1U would be a linear function ofε and it would behave
reversible during the unloading-reloading sequences.
Non-linearity arises due to fiber breaking and the slid-
ing fiber-matrix interface. The relative importance of
the two mechanisms, i.e. deformation and damage,
changes at a crossover strainεcr whereεcr(1+ 2ν)=
(1l (εcr)/1lc)PLo(E f εcr). For deformationsε¿ εcr the
linear term is relevant, while forε > εcr the second
term dominates the sum giving rise to a non-linear in-
crease and hysteresis during unloading-reloading. In
the completely unloaded case the electric resistance is
determined by the damagePLo(TM), by the remaining
anelastic deformationεan, and by the closing of cracks
desribed by1l/1lc.
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Following Ref. [25] the crack opening displacement
1l can be defined as the displacement difference be-
tween a broken face and an adjacent unbroken fiber,
i.e.

1l = l f
T − 〈Tb〉

E f
= rT (T − 〈Tb〉)

2τE f
. (26)

The specific forms of1l for the case of loading, un-
loading and reloading can be obtained by substituting
Equations 6, 8 and 13 into the general form Equation 26.

1l L = B(εL)2

[
1− P(TM)

(
σc

TM

)m+1
]
, (27)

1l U = BεM

{
εU − 2εM

(
σc

TM

)m+1

×
[

exp

[
−
(
εM − εU

2εM

)(
TM

σc

)m+1
]

− 1+ 1

2
P(TM)

]}
, (28)

1l R = BεM

{
εR− 2εM

(
σc

TM

)m+1

×
[

1−
(

1− 1

2
P(TM)

)

× exp

[
−
(
εR− εM

2εM

)(
TM

σc

)m+1
]]}

, (29)

where the common multiplication factor isB=
r E f /(2τ P(TM)). Finally, the potential drop1U is
characterized by Equations 24, 25 and 27–29. It has
to be emphasized that the form of1l U and1l R results
in hysteresis loops of1U during unloading-reloading.

5. Comparison to experiments
In the present chapter the constitutive behavior deter-
mined by Equations 7, 10 and 14 and the potential drop
described by Equations 24, 25 and 27–29 of the model
will be compared to the experimental results. The mea-
sured values of the most important characteristic quan-
tities of the constituent fibers and that of the C/C-SiC
composite are summarized in Table I.

TABLE I The parameter values

Parameter Symbol Unit Value

Young modulus of C fibers E f GPa 230
Characteristic strength of C fibers σo MPa 3530
Weibull modulus of C fibers m 1 3.3± 0.6
Young modulus of composite E GPa 70–80
Ultimate tensile strength of composite σUTS MPa 90–170
Volume fraction of fibers f 1 0.32
Initial potential drop Uo mV 185

Figure 8 Comparison of the constitutive behavior determined by Equa-
tions 7, 10 and 14 to the experimental results. The values of the fitting
parameters areσc= 460 MPa andm= 1.85. For the other parameters
see Table I.

According to the experiments, during the manufac-
turing process of the composite not only the matrix
material gets multiply cracked but a certain fraction
of fibers also breaks [19–24]. This initial damage of
fibers and its effect on the development of damage un-
der loading is very hard to quantify. Furthermore, our
model calculation is based on the assumption of global
load sharing. It is well known about GLS that it over
estimates the ultimate tensile strengthσUTS of com-
posites, since it neglects stress concentration around
failed fibers. Due to these reasons the constitutive be-
havior was fitted such that the volume fractionf and the
Young modulusE f of fibers were considered as input
parameters from Table I, and the value of the character-
istic strengthσc, and the Weibull modulusm of fibers
were varied until best fit was achieved. The product
fEf gives the Young modulus of the composite in the
initial state, i.e. the initial slope of the loading curve.
Hence, in the fitting this has to be fixed and the shape
of the theoretical curve Equations 7, 10 and 14 is con-
trolled only byσc andm. The result of the fitting pro-
cedure is presented in Fig. 8. The values of the fitting
parameters areσc= 460 MPa andm= 1.85. It can be
observed in Fig. 8 that the quality of the fit is satis-
factory, there is larger deviation only in the vicinity of
global failure. In this region the experimental curve is
more brittle in the sense that it is practically straight,
while the fitted curve has a certain curvature. Using a so-
phisticated simulation technique, it was shown in Ref.
[14] that decreasing the range of stress redistribution,
i.e. making load sharing more and more localized, the
ultimate tensile strengthσUTS decreases and the overall
constitutive behavior of the composite becomes more
brittle. Hence, it is reasonable to assume that the dis-
crepancy between the fitted and the experimental curve
is due to the neglect of possible stress localization. The
value ofσc obtained from the fitting procedure cannot
be compared toσo in Table I, because in the experiments
the sliding resistanceτ was not measured.

Since the value ofδc cannot be determined in the ab-
sence ofτ , for the fitting of the potential drop we set the
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Figure 9 Comparison of the potential drop determined by Equa-
tions 24, 25 and 27–29 to the experimental results. Experimental re-
sults: full square: loading, full circle: complete unloading. Theoretical re-
sults: dashed line: loading, dotted-line: unloading-reloading sequences,
dashed-dotted line: complete unloading. The value of the fitting parame-
ters areσc= 1900 MPa andm= 1.8. For the other parameters see Table I.

value ofn= Lo/δc to 1 in Equations 24 and 25. Then,
the potential drop Equations 24, 25 and 27–29 can be
fitted to the experimental results in such a way that the
value of the potential dropUo measured in the initial
state, the Young modulusE f and Poisson ratioν of
fibers are considered as input parameters and againσc
andmcontrol the overall shape of the theoretical curve.
Note thatUo determines the slope of1U in the vicinity
of ε∼ 0. The best fit obtained is presented in Fig. 9. It
can be observed that the model calculations are in rea-
sonable agreement with the experimental results. The
value of the fitting parameters areσc= 1900 MPa and
m= 1.8. This value ofσc is different from the value ob-
tained by fitting the constitutive behavior, since the two
experiments were carried out on different specimens
having different values of failure strength. The values
of m obtained from the two fittings agree fairly well.

It was found in the experiments that the potential
drop measured during loading (full squares in Fig. 9)
can be well fitted with a power law, i.e.1U ≈ εa. The
value of the exponenta scatters between 1 and 2 de-
pending on the sample, and it isa= 1.42 for the spe-
cific case presented in Fig. 9. The theoretical curve can
also be approximated with a power law with an expo-
nent 1.54, which is consistent with the experimental re-
sult. In the case of complete unloading the experimental
data (full circles) were fitted with a straight line. The
theoretical curve (dashed-dotted line) seems to agree
with this functional behavior. The unloading-reloading
curves in Fig. 9 are somewhat steeper than the experi-
mentally observed ones. In our calculations those fibers
in the woven structure, which are perpendicular to the
load direction were completely omitted. However, it
can also happen that there are conducting contacts be-
tween fibers perpendicular to each other. This effect is
difficult to quantify, but it can be partly responsible for
slight discrepancies of the theory and the experiments.
Furthermore, we neglected that the electric resistance

due to the closing of cracks can depend on the actual
stress level, and in general, it is higher than the resis-
tance of intact fibers. The value ofn= Lo/δc, which
was set to 1 for the fitting, can also slightly affect the
shape of the theoretical curves but not the overall func-
tional behavior.

The experimental results obtained with different
specimens show a statistical variation, since the behav-
ior of the material strongly depends on the microstruc-
ture controlled by the manufacturing process. Since our
model is based on average quantities, the fitting of dif-
ferent experiments result in a certain variation of the
fitting parameters.

6. Discussion
In the present paper we made an attempt to give a
theoretical interpretation of the experimental results
concerning the damage development in the C/C-SiC
composite under uniaxial cyclic loading-unloading-re-
loading. Our approach is based on statistical microme-
chanical models of the failure of composites, and cap-
tures quasi-periodic matrix cracking, gradual breaking
of fibers and sliding of fibers relative to the matrix as
failure mechanism within a global load sharing frame-
work. The constitutive behavior of the material and the
potential drop was reproduced by the model calcula-
tions with a reasonable accuracy. The theoretical results
are general, they can be applied to study the behavior
of other composites as well.

The question naturally arises whether it is possible
to introduce a damage variable in terms of the potential
drop1U . It follows from our treatment that in sim-
ple cases the damage occurring in fiber bundles can be
fully characterized by1U measured during the load-
ing process, however, in more realistic situations it can
happen that the electric resistance of the specimen is
also strongly affected by matrix cracking occurring in
both the transversal and longitudinal plys, and by the
complicated conducting contacts between the fibers of
the woven plys. In these cases the measurement of the
potential drop does not provide sufficient information
for the characterization of damage.

The main limitation of the present approach is the as-
sumption of global load sharing. Besides the possible
effects of localized load sharing mentioned in the paper,
microstructural analysis of damaged specimens showed
that the microcracks occurring in fiber bundles have an
interesting spatial distribution [23], which cannot be
understood in a global load sharing framework due to
the neglect of any spatial correlations. Furthermore, the
internal geometry of the composite has a hierarchical
structure, i.e. the fibers are organized into subbundels,
the subbundles form bundles, then plies, and finally the
specimen is built up from plies. This hierarchical or-
ganization shows up also in the damage development
in the composite. That is why, for a quantitative grasp
of these phenomena, it is necessary to work out a scale
dependent description, based on real space renormal-
ization, in the framework of local load sharing.

To describe more complicated loading situations oc-
curring in practical applications (e.g. multiaxial load)
our method has to be improved by taking into account
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both plys (the transversal and the longitudinal one) with
a proper coupling in between. In these loading cases
additional damage mechanisms are activated (matrix
cracking, delamination, debonding) interacting with
each other, the treatment of which is rather complicated.
Further experimental and theoretical investigations in
this direction are in progress.

Recently, it has been shown that the size distribution
of avalanches of fiber breaks in dry fiber bundle models
shows universal power law behavior [32–35]. From the
view point of statistical physics, it would be very inter-
esting to see how robust the universality is with respect
to the effect of matrix material, which can be studied
in the model presented here.
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